
Accessibility Heuristics for Vibe Coding Interfaces 
Shalini Madan 

shalinii@umich.edu 
School of Information, 
University of Michigan 

Ann Arbor, Michigan, USA 

Sreelakshmi Surabiyil Bindu 
sreelaks@umich.edu 
School of Information, 
University of Michigan 

Ann Arbor, Michigan, USA 

Venkatesh Potluri 
potluriv@umich.edu 
School of Information, 
University of Michigan 

Ann Arbor, Michigan, USA 

Abstract 
AI coding tools are transforming programming, shifting it from a 
highly editorial process into a conversational activity. Popular Vibe 
coding tools such as Replit and Cursor integrate natural language 
interfaces with traditional development environments. While these 
tools promise simplicity, increased productivity, and automation, 
they also introduce new accessibility challenges for blind or vi-
sually impaired (BVI) developers. A systematic identification of 
these accessibility challenges necessitates comprehensive guide-
lines that account for the complex interactions in these tools. To 
address this need, we develop accessibility heuristics to assess the 
accessibility of AI conversational programming tools. Our heuris-
tics combine web accessibility guidelines, best practices to design 
conversational interfaces, and accessibility needs specific to BVI 
developers. Our evaluation of three widely used conversational 
programming tools shows that most accessibility challenges arise 
from complex keyboard interactions, poor focus management, and 
insufficient feedback and access to the various actions and output 
of the tools. 

CCS Concepts 
• Human-centered computing → Accessibility design and 
evaluation methods. 

Keywords 
Heuristics, Developer Tools, AI Coding Assistants 

ACM Reference Format: 
Shalini Madan, Sreelakshmi Surabiyil Bindu, and Venkatesh Potluri. 2025. 
Accessibility Heuristics for Vibe Coding Interfaces. In The 27th International 
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’25), 
October 26–29, 2025, Denver, CO, USA. ACM, New York, NY, USA, 5 pages. 
https://doi.org/10.1145/3663547.3759729 

1 Introduction 
Programming and code generation using Artificial Intelligence (AI) 
is becoming prevalent among software developer communities [15]. 
AI coding tools offer varying degrees of assistance, from enhanced 
code completion to end-to-end software engineering tasks. End-
user programming and Vibe coding Tools such as Cursor[5] and 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
ASSETS ’25, Denver, CO, USA 
© 2025 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0676-9/2025/10 
https://doi.org/10.1145/3663547.3759729 

Firebase Studio[25] offer increased assistance by taking in natu-
ral language instructions and operating on the user’s developer 
tool, allowing the user to intervene and edit code manually. Agen-
tic coding tools such as Google Jules[13] and Codex[18] provide 
end-to-end AI-assisted coding support with minimal visibility into 
their actions[23]. The agentic tools combine interactions found in 
conversational interfaces, the web, and integrated development 
environments (IDEs) to offer conversational programming experi-
ences with varying degrees of AI assistance and user agency. 

While the emergence of AI coding assistance in conversational 
programming tools offers great potential to lower the floor for 
programming [4], it presents new accessibility barriers to blind 
or visually impaired (BVI) screen reader users. For example, AI 
code completion tools constantly suggest blocks of code as grayed-
out ghost text, giving screen reader users no controls to inspect 
these suggestions before acting on them. This leads to unintended 
code edits, overwhelming users by interfering with their cogni-
tive processing.[9] Vibe coding tools increase this cognitive over-
load by requiring users to switch between the prompt (natural 
language instruction), generated code (response), and the codebase. 
In a nonvisual context, where content must be listened to sequen-
tially, this overload makes it difficult to assess the relevance of 
information to the task at hand, leading to unnecessary context 
switches [1, 3, 9]. These new challenges compound long-standing 
accessibility barriers in code navigation, debugging, and access to 
documentation [2, 20, 24]. This abundance of accessibility gaps 
signals an immediate need to study the accessibility of conversa-
tional programming tools. A holistic and systematic investigation, 
however, may be challenging due to the lack of clear guidelines and 
a framework to assess their accessibility. 

While accessibility heuristics offer clear guidelines for websites 
(WCAG) [31], authoring tools (ATAG)[30], and integrated develop-
ment environments [20], they operate in silos and may not address 
the accessibility challenges posed by emerging end-user program-
ming paradigms that converge natural language, web, and pro-
gramming interfaces. 1 To address this gap, our work answers the 
following research question: How do we systematically evaluate the 
accessibility of conversational programming tools? We contextualize 
and adapt heuristics from multiple domains to suit conversational 
AI programming environments. We draw from WCAG and Heuris-
tics for usable Conversational Interfaces and contextualize them 
to the coding tool needs of BVI developers. To validate the applica-
bility of our heuristics, we evaluate three popular conversational 
programming tools for accessibility. We close with next steps to 
formalize our heuristics. 

1We use ‘conversational programming tools’ [21] to describe vibe coding and agentic 
tools that integrate code generation with natural language interaction, such as GitHub 
Copilot with Agent Mode, Replit, and Google Jules. 

https://doi.org/10.1145/3663547.3759729
https://doi.org/10.1145/3663547.3759729
mailto:potluriv@umich.edu
mailto:sreelaks@umich.edu
mailto:shalinii@umich.edu


ASSETS ’25, October 26–29, 2025, Denver, CO, USA Madan et al. 

2 Background 
We summarize existing guidelines to evaluate conversational in-
terfaces, providing examples to demonstrate how they may not be 
applicable to assess accessibility of conversational programming 
tools. We then discuss the accessibility of AI programming assis-
tants and summarize efforts to use heuristics to assess and improve 
the accessibility of developer experiences for BVI users. 

2.1 Accessibility Gaps in Usability Guidelines 
Heuristic guidelines for usable conversational AI agentic inter-
actions [14] build on Nielsen’s Usability Heuristics[17] for user 
interface design, a widely adopted standard for evaluating the us-
ability of an interface. Nielsen’s heuristics, such as Visibility of 
System Status (system keeps users informed through timely feed-
back) and Flexibility and Efficiency of Use (supporting novice and 
expert users through shortcuts and adaptable workflows), and con-
versational heuristics like Context Preservation (system maintains 
conversational context within and across sessions), offer guidance 
for evaluating system feedback, interaction flow, and user control. 
While these heuristics state that system status must be perceivable, 
the implementations often rely heavily on visual cues (pop-ups, 
color changes, and persistent system status bars) to communicate 
system actions and status. AI tools and vibe coding platforms may 
pass this usability heuristic, but may present accessibility barriers 
for BVI users Similarly, tools may pass heuristics such as Consis-
tency and Standards (users should not have to wonder whether 
different words, options, or actions mean the same thing), but screen 
reader users still face challenges when working with AI-generated 
code. The process is often time-consuming and cognitively demand-
ing, requiring navigation across multiple views, such as the editor, 
message list, and accessible view [3]. These challenges call for a 
need to examine how well existing accessibility guidelines address 
user concerns. 

2.2 Evaluating Accessibility in Programming 
The widely recognized Web Content Accessibility Guidelines[31] 
provides testable criteria for accessible web content. These criteria 
have been augmented with domain-specific needs to uncover ac-
cessibility insights and suggest improvements to developer tools. 
Potluri and Singanamalla et al.[19] assess the accessibility of com-
putational notebooks through metrics derived from WCAG, best 
practices to visualize data [6], and author notebooks. The Note-
books4All project builds on foundational criteria from WCAG, and 
adapts them to the structure and interaction patterns of computa-
tional notebooks to recommend best practices for authoring acces-
sible notebooks[7]. 

We complement this body of work by exploring the application 
of WCAG standards and conversational heuristics to offer a sys-
tematic approach to evaluate the accessibility of conversational 
programming platforms. 

3 Heuristics Development 
We describe our iterative approach to developing these heuristics 
and summarize the developed set. Conversational programming 
tools combine web user experiences, conversational interfaces, and 

Criteria Parameters Description 

H1. Agent 
Interface 

1.1 Accessible Ele-
ments & Media 
1.2 Color 

Criteria to evaluate 
if users perceive the 
interactive and infor-
mational elements in 
the agent’s interface 
[1, 27]. 

H2. Agent 
Operation 

2.1 Status 
2.2 Result 
2.3 Action Sequence 

Criteria to evaluate if 
users can access and fol-
low the actions taken 
by the agent. [3, 14] 

H3. User 
Operation 

3.1 Keyboard Access 
3.2 Consistent Navi-
gation 
3.3 Context Switch-
ing 
3.4 Focus Manage-
ment 

Criteria to assess 
full keyboard op-
erability [29], nav-
igation [2, 20], and 
whether users re-
tain context when 
switching between 
interfaces to prompt 
and code[9, 10]. 

H4. Help & 
Recovery 

4.1 Error Recovery 
4.2 Error Prevention 
4.3 Help 

Criteria to evaluate 
how the system helps 
users recognize and re-
cover from errors [14], 
and how users can 
access help and docu-
mentation [12, 24]. 

H5. 
Adaptability 

5.1 Compatibility 
5.2 Flexibility 

Criteria to assess how 
well the system accom-
modates varying user 
needs.[14, 28] 

Table 1: Overview of the Accessibility Heuristics 

traditional programming tools. We reviewed Nielsen’s and Con-
versational heuristics and Web Accessibility Guidelines for this 
diversity, and to contextualize them for accessibility needs of BVI 
developers. [14, 20, 30, 31]. 

3.1 Iterative Development 
We began our development by identifying a list of over 20 evalua-
tion questions based on prior accessibility guidelines and known 
screen reader challenges. Through discussions, we identified pa-
rameters and their associated questions, consolidating overlapping 
items and removing repetitions. Subsequent iterations refined the 
wording of these questions and grouped the parameters into five 
major heuristic categories (H1-H5), each representing an aspect of 
the user’s interaction with the conversational programming tool. 
Within each category, related parameters were organized under 
subheadings (1.1, 1.2) to encompass all evaluations within a broader 
theme. For example, 1.1: Accessible Elements and Media was a param-
eter designed to evaluate the perceivability of visual elements in 
conversational AI interfaces. Prior research reports that many chat-
based AI interfaces include unlabeled or mislabeled UI elements, 



Accessibility Heuristics for Vibe Coding Interfaces ASSETS ’25, October 26–29, 2025, Denver, CO, USA 

making them inaccessible to BVI users [1] and hence, the parameter 
included assessing whether interface components such as icons, 
images, and AI-generated UI artifacts were properly labeled with 
accessible names or ARIA attributes. Evaluation questions ground-
ing this heuristic included: (1) Do all visual elements have ARIA 
labels or accessible names interpretable by screen readers? (2) Are all 
images, icons, and illustrations given meaningful alt text or labels? 
(3) Are agent-generated visual artifacts accessible via screen reader 
focus? We mapped these questions to WCAG 2.1 Success Criterion 
1.1.1 (Non-text Content) and 4.1.2 (Name, Role, Value), which state 
that the provision of text alternatives for non-text content and the 
requirement that interface elements be programmatically deter-
minable. These criteria are important in the context of AI-assisted 
coding tools where users interact not only with predefined UI com-
ponents, but also with buttons and previews generated by the AI 
during runtime. 

3.2 Deriving the Final Parameters 
We further iterated and revised the parameters to evaluate the ac-
cessibility of AI coding interfaces. Some parameters were merged 
or redefined as we found overlap. For example, we initially included 
a parameter Action Confirmation, which evaluated whether the sys-
tem communicated what it was about to do and whether users have 
control to make changes. However, we did not take this parameter 
in its original form, as the parameter as a standalone did not have 
direct relevance to accessibility challenges of screen reader users. 
We instead used the underlying intent, which was to evaluate if 
users received meaningful feedback and maintained control, into a 
more contextualized heuristic for AI-coding agent tool accessibility, 
and contextualized it as one of the parameters under H4: Agent Op-
eration. We provide a summary of the proposed heuristic categories 
and the 14 final parameters in table 1. We provide the full expanded 
Heuristic set in the Supplementary Material. 

4 Preliminary Validation 
To validate the relevance and applicability of our heuristics, we 
conducted preliminary heuristic evaluations on three end-user con-
versational programming tools: Visual Studio Code with Copilot 
Agent Mode [16], Replit Agent[22], and Jules[13]. Evaluations were 
conducted using JAWS, by two team members. During each tool’s 
evaluation, one member performed the task, and the other member 
made note of the tools behavior. Both team members discussed and 
reached an agreement regarding the score of every parameter. We 
consulted a team member with screen reader expertise to ensure 
that the evaluations and the tasks performed on the AI tool were 
using the appropriate screen reader functions. 

We designed a use case consisting of 3 steps for our evaluation. 
Step 1 consisted of prompting the tool to ‘Create a simple portfolio 
website with an about page, a contact form, and placeholders for 
four projects’. In step 2, we prompted the tool to make minor mod-
ifications to the generated website (adding a project placeholder, 
updating the contact form to include a drop-down menu for in-
quiry type, and editing the about section with custom text). Step 
3 consisted of switching between different views to understand 
the generated output. The portfolio-creation task was inspired by 

related HCI studies [3, 8, 11], and chosen to keep tasks straightfor-
ward yet complex enough to explore the functionalities supported 
by the vibe coding tool. The series of steps further helped us exam-
ine how vibe coding tools support multi-step workflows involving 
code editing, iteration, and validation. Our goal was to see if we 
could make edits and accessibly switch between the generated out-
put files. While the agent was generating a response, we noted any 
significant discrepancies between the visual display and the screen 
reader output. 

To evaluate each heuristic category, we applied a pass/fail scoring 
system accompanied by a brief justification explaining the rationale 
behind the score. In addition to this binary scoring, we introduced 
a severity scale: Mild, Moderate, and Severe, to characterize the im-
pact of violations for each parameter within these categories. This 
scale was based on the quality and completeness of information 
provided by the screen reader and the extent to which the issue 
created an accessibility barrier for users. For example, unlabeled 
buttons, unclear agent responses, and the absence of status mes-
sages were noted as severe violations and marked as fail, as these 
elements are important for screen reader users to navigate and 
interact with the interface. In the context of AI-assisted end-user 
programming, real-time agent feedback and system state play an 
important role, and missing or unclear information prevents users 
from understanding what the tool is doing or how to respond. This 
loss of control and transparency, hence, not only causes issues with 
usability, but is a major accessibility barrier. 

5 Heuristic Evaluation Result 
Our goal was to assess how well our heuristics can surface acces-
sibility strengths and issues within conversational programming 
environments. We summarize our evaluation below and preview 
the accessibility of the three chosen tools. We found that most 
heuristic violations occurred within Agent Operation (H2) and User 
Operation (H3). Within the Agent Operation (H2) heuristic cate-
gory, we observed multiple mild-to-severe violations, particularly 
related to the communication of status updates (2.1). When working 
with Replit and Jules, the screen reader did not inform users about 
the actions the tool was taking or it’s progress, severely violating 
H2.1. VS Code offered more visibility into its actions, although 
through minimal progress indicators. Sighted VS Code users could 
see completion percentages and real-time information about the 
tool’s actions. However, BLVI developers were limited to audio 
cues indicating the agent was performing the task and did not have 
access to granular information about the agent’s actions in real 
time. The sequence of actions taken by the agent was announced 
only after the agent completed the task, making it difficult for 
users to follow the agent’s behavior. We assigned a mild violation 
to VS Code for 2.1 as users could still access the agent’s actions 
after it was complete. Within User Operation (H3), we identified 
moderate-to-severe violations in keyboard accessibility (3.1), consis-
tent navigation(3.2) and focus management (3.4) for both Replit and 
Jules. The tools did not shift focus to dialog boxes or buttons requir-
ing user attention (3.4), had keyboard traps in some instances (3.1) 
and shifted focus to unexpected locations while navigating with a 
keyboard (3.2). Moreover, none of the previews of the AI-generated 
artifacts were keyboard accessible (3.1). 



ASSETS ’25, October 26–29, 2025, Denver, CO, USA Madan et al. 

Overall, we observed that VS Code with Copilot Agent mode 
demonstrated a comparatively higher degree of accessibility, with 
most interface elements being perceivable and operable via a screen 
reader and audio cues provided by the tool. In VS Code with Copilot 
Agent Mode, mild-to-moderate violations were observed in agent 
feedback clarity (2.1) and agent plan communication (2.3). Replit 
and Jules, both browser-based tools, had moderate-to-severe vio-
lations across all five heuristic categories. The tools handled basic 
prompts, but editing or switching between outputs was still inac-
cessible. We include comprehensive evaluations for the 3 tools in 
the Supplementary Material. 

6 Conclusion & Next Steps 
To conclude, our early exploration contributes a first look at a 
systematic approach to assess the accessibility of emerging pro-
gramming experiences driven by conversational interactions. Our 
preliminary evaluations demonstrate the applicability of our ap-
proach to identifying nuanced accessibility challenges posed by 
AI conversational programming interfaces. We lay the foundation 
for evaluation toolkits to ensure that the ongoing paradigm shift 
in programming remains accessible. Though comprehensive, re-
sults derived from our current heuristic set may not account for 
accessibility barriers that low vision users may experience when 
consuming content through visual access technologies such as 
magnifiers[26]. To address this, will expand the evaluation criteria 
for our heuristics to assess the accessibility of the user experience 
when conversational programming tools are used with visual mod-
ifications such as inverted colors and zoom. We acknowledge that 
the validation of the heuristics was only by the team. The next 
phase includes recruiting and interviewing various stakeholders 
such as accessibility professionals, BLVI developers, academics, and 
user researchers to strengthen the validity of the heuristics. 

References 
[1] Rudaiba Adnin and Maitraye Das. 2024. "I look at it as the king of knowledge": 

How Blind People Use and Understand Generative AI Tools. In Proceedings of the 
26th International ACM SIGACCESS Conference on Computers and Accessibility (St. 
John’s, NL, Canada) (ASSETS ’24). Association for Computing Machinery, New 
York, NY, USA, Article 64, 14 pages. doi:10.1145/3663548.3675631 

[2] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews 
and Observation of Blind Software Developers at Work to Understand Code 
Navigation Challenges. In Proceedings of the 19th International ACM SIGAC-
CESS Conference on Computers and Accessibility (Baltimore, Maryland, USA) 
(ASSETS ’17). Association for Computing Machinery, New York, NY, USA, 91–100. 
doi:10.1145/3132525.3132550 

[3] Nan Chen, Luna K. Qiu, Arran Zeyu Wang, Zilong Wang, and Yuqing Yang. 2025. 
Screen Reader Users in the Vibe Coding Era: Adaptation, Empowerment, and 
New Accessibility Landscape. arXiv:2506.13270 [cs.HC] https://arxiv.org/abs/ 
2506.13270 

[4] Parmit K. Chilana, Celena Alcock, Shruti Dembla, Anson Ho, Ada Hurst, Brett 
Armstrong, and Philip J. Guo. 2015. Perceptions of non-CS majors in intro 
programming: The rise of the conversational programmer. In 2015 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 251–259. 
doi:10.1109/VLHCC.2015.7357224 

[5] Cursor 2025. Cursor: The AI Code Editor. https://www.cursor.com/ 
[6] Frank Elavsky, Cynthia Bennett, and Dominik Moritz. 2022. How Accessible is 

My Visualization? Evaluating Visualization Accessibility with Chartability. In 
Eurographics Association and John Wiley & Sons Ltd. 

[7] Tony Fast. 2023. Notebook Authoring Accessibility Checklist. Iota-School “Note-
books for All” (GitHub Pages). https://iota-school.github.io/notebooks-for-
all/exports/resources/event-hackathon/notebook-authoring-checklist/ Accessed: 
2025-06-25. 

[8] Claire Ferrari, Amy Hurst, and Scott Fitzgerald. 2019. Blind Web Development 
Training at Oysters and Pearls Technology Camp in Uganda. In Proceedings of 
the 16th International Web for All Conference (San Francisco, CA, USA) (W4A ’19). 

Association for Computing Machinery, New York, NY, USA, Article 18, 10 pages. 
doi:10.1145/3315002.3317562 

[9] Claudia Flores-Saviaga, Benjamin V. Hanrahan, Kashif Imteyaz, Steven Clarke, 
and Saiph Savage*. 2025. The Impact of Generative AI Coding Assistants on 
Developers Who Are Visually Impaired. In Proceedings of the 2025 CHI Conference 
on Human Factors in Computing Systems (CHI ’25). Association for Computing 
Machinery, New York, NY, USA, Article 1164, 17 pages. doi:10.1145/3706598. 
3714008 

[10] Claudia Flores-Saviaga, Benjamin V. Hanrahan, Kashif Imteyaz, Steven Clarke, 
and Saiph Savage*. 2025. The Impact of Generative AI Coding Assistants on 
Developers Who Are Visually Impaired. In Proceedings of the 2025 CHI Conference 
on Human Factors in Computing Systems (CHI ’25). Association for Computing 
Machinery, New York, NY, USA, Article 1164, 17 pages. doi:10.1145/3706598. 
3714008 

[11] Mina Huh and Amy Pavel. 2024. DesignChecker: Visual Design Support for 
Blind and Low Vision Web Developers. In Proceedings of the 37th Annual ACM 
Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST 
’24). Association for Computing Machinery, New York, NY, USA, Article 142, 
19 pages. doi:10.1145/3654777.3676369 

[12] Jazette Johnson, Andrew Begel, Richard Ladner, and Denae Ford. 2022. Program-
L: Online Help Seeking Behaviors by Blind and Low Vision Programmers. In 2022 
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 
1–6. doi:10.1109/VL/HCC53370.2022.9833106 

[13] Google Jules. 2025. https://jules.google/ Accessed: 2025-06-24. 
[14] Raina Langevin, Ross J Lordon, Thi Avrahami, Benjamin R. Cowan, Tad Hirsch, 

and Gary Hsieh. 2021. Heuristic Evaluation of Conversational Agents. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems 
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, 
NY, USA, Article 632, 15 pages. doi:10.1145/3411764.3445312 

[15] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2024. A Large-Scale Survey 
on the Usability of AI Programming Assistants: Successes and Challenges. In 
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. 
Association for Computing Machinery, New York, NY, USA. 

[16] Microsoft. 2025. GitHub Copilot. https://github.com/features/copilot/ 
[17] Jakob Nielsen. 1995. 10 Usability Heuristics for User Interface Design. Nielsen 

Norman Group. https://www.nngroup.com/articles/ten-usability-heuristics/ 
[18] OpenAI. 2025. ChatGPT. https://chat.openai.com/ 
[19] Venkatesh Potluri, Sudheesh Singanamalla, Firn Tieanklin, and Jennifer Mankoff. 

2023. Notably Inaccessible – Data Driven Understanding of Data Science Note-
book (In)Accessibility. In Proceedings of the 25th International ACM SIGAC-
CESS Conference on Computers and Accessibility (New York, NY, USA) (AS-
SETS ’23). Association for Computing Machinery, New York, NY, USA. https: 
//doi.org/10.1145/3597638.3608417 

[20] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar 
Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving Programming 
Environment Accessibility for Visually Impaired Developers. In Proceedings of 
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, 
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 
1–11. doi:10.1145/3173574.3174192 

[21] Alexander Repenning. 2011. Making programming more conversational. In 2011 
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 
191–194. doi:10.1109/VLHCC.2011.6070398 

[22] Replit, Inc. 2025. Replit: From idea to app, fast. https://replit.com. Accessed: 
2025-06-25. 

[23] Ranjan Sapkota, Konstantinos I. Roumeliotis, and Manoj Karkee. 2025. AI 
Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges. 
arXiv:2505.10468 [cs.AI] https://arxiv.org/abs/2505.10468 

[24] Kevin M Storer, Harini Sampath, and M. Alice Alice Merrick. 2021. ”It’s Just 
Everything Outside of the IDE that’s the Problem”: Information Seeking by 
Software Developers with Visual Impairments. In Proceedings of the 2021 CHI 
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). 
Association for Computing Machinery, New York, NY, USA, Article 487, 12 pages. 
doi:10.1145/3411764.3445090 

[25] Google Firebase Studio. 2025. https://firebase.google.com/docs/studio Accessed: 
2025-06-24. 

[26] Sarit Felicia Anais Szpiro, Shafeka Hashash, Yuhang Zhao, and Shiri Azenkot. 
2016. How People with Low Vision Access Computing Devices: Understanding 
Challenges and Opportunities. In Proceedings of the 18th International ACM 
SIGACCESS Conference on Computers and Accessibility (Reno, Nevada, USA) 
(ASSETS ’16). Association for Computing Machinery, New York, NY, USA, 171–180. 
doi:10.1145/2982142.2982168 

[27] W3C Web Accessibility Initiative (WAI). 2018. Understanding Success Criterion 
4.1.2: Name, Role, Value. https://www.w3.org/WAI/WCAG21/Understanding/ 
name-role-value.html. Accessed: 2025-06-24. 

[28] W3C Web Accessibility Initiative (WAI). 2018. Understanding Success Criterion: 
Compatible. https://www.w3.org/WAI/WCAG21/Understanding/compatible. 
html. Accessed: 2025-06-25. 

https://doi.org/10.1145/3663548.3675631
https://doi.org/10.1145/3132525.3132550
https://arxiv.org/abs/2506.13270
https://arxiv.org/abs/2506.13270
https://arxiv.org/abs/2506.13270
https://doi.org/10.1109/VLHCC.2015.7357224
https://www.cursor.com/
https://iota-school.github.io/notebooks-for-all/exports/resources/event-hackathon/notebook-authoring-checklist/
https://iota-school.github.io/notebooks-for-all/exports/resources/event-hackathon/notebook-authoring-checklist/
https://doi.org/10.1145/3315002.3317562
https://doi.org/10.1145/3706598.3714008
https://doi.org/10.1145/3706598.3714008
https://doi.org/10.1145/3706598.3714008
https://doi.org/10.1145/3706598.3714008
https://doi.org/10.1145/3654777.3676369
https://doi.org/10.1109/VL/HCC53370.2022.9833106
https://jules.google/
https://doi.org/10.1145/3411764.3445312
https://github.com/features/copilot/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://chat.openai.com/
https://doi.org/10.1145/3597638.3608417
https://doi.org/10.1145/3597638.3608417
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1109/VLHCC.2011.6070398
https://replit.com
https://arxiv.org/abs/2505.10468
https://arxiv.org/abs/2505.10468
https://doi.org/10.1145/3411764.3445090
https://firebase.google.com/docs/studio
https://doi.org/10.1145/2982142.2982168
https://www.w3.org/WAI/WCAG21/Understanding/name-role-value.html
https://www.w3.org/WAI/WCAG21/Understanding/name-role-value.html
https://www.w3.org/WAI/WCAG21/Understanding/compatible.html
https://www.w3.org/WAI/WCAG21/Understanding/compatible.html


Accessibility Heuristics for Vibe Coding Interfaces ASSETS ’25, October 26–29, 2025, Denver, CO, USA 

[29] W3C Web Accessibility Initiative (WAI). 2023. Understanding Guideline 2.1: Key-
board Accessible. https://www.w3.org/WAI/WCAG22/Understanding/keyboard-
accessible.html. Accessed: 2025-06-25. 

[30] World Wide Web Consortium (W3C). 2015. Authoring Tool Accessibility Guide-
lines (ATAG) 2.0. https://www.w3.org/TR/ATAG20/. Accessed: 2025-06-25. 

[31] World Wide Web Consortium (W3C). 2023. Web Content Accessibility Guidelines 
(WCAG) 2.2. https://www.w3.org/TR/WCAG22/. Accessed: 2025-06-25. 

https://www.w3.org/WAI/WCAG22/Understanding/keyboard-accessible.html
https://www.w3.org/WAI/WCAG22/Understanding/keyboard-accessible.html
https://www.w3.org/TR/ATAG20/
https://www.w3.org/TR/WCAG22/

	Abstract
	1 Introduction
	2 Background
	2.1 Accessibility Gaps in Usability Guidelines
	2.2 Evaluating Accessibility in Programming

	3 Heuristics Development
	3.1 Iterative Development
	3.2 Deriving the Final Parameters

	4 Preliminary Validation
	5 Heuristic Evaluation Result
	6 Conclusion & Next Steps
	References

